
S T E P H E N S C H A U B

JavaScript "Classes"
1

Classes

 JavaScript originally had no class mechanism

 Even now, when you can define classes with the class keyword, there is
still no concept of a class behind the scenes

 Objects are defined using

 Object literals or

 Constructor functions

 Inheritance is supported via a Prototype mechanism

2

Object Literals with Methods

var calculator = { // an object with 3 properties
 operand1: 1,
 operand2: 1,
 compute: function() {
 this.result = this.operand1 + this.operand2;
 }
};
calculator.compute(); // What is 1+1?
print(calculator.result); // Display the result

3

The this Keyword

 this refers to the object on which the function was invoked

 If the function was invoked without an object, this refers to the global
object

 The global object contains top-level variables and functions

4

The this Keyword

 Consider:

 function setName(newName) { this.name = newName; }

 setName can be invoked on an object:

 var person = { name: "", age: 15, setName: setName };
person.setName("Johnny"); // sets person.name to "Johnny"

 setName can be invoked without an object:

 setName("Johnny"); // defines a new global variable name
console.log(name);

 Having this bound to global object was not a good design decision

 Strict mode prevents this behavior

5

Constructor Functions

 A constructor function is designed to initialize an object with properties

 Invoke with new operator

 Accesses new object using this

 Example:

function Rectangle(w, h) {
 this.width = w;
 this.height = h;
}

var rect = new Rectangle(2, 4); // rect = { width: 2, height: 4 }

6

Constructor Function Caveat

 Calling a constructor function without using new is a big mistake

 rect = Rectangle(2, 4); // tromps on globals

 Inside the constructor function, references to this cause
variables/methods to be added to the global object

 Or worse, existing global variables/functions are replaced

 In strict mode, calling constructor function without using new results in
runtime error

7

Adding Methods to Objects

 We've already seen how methods can be defined in an object literal

 A constructor function can also be used to define methods for its
objects:

function Rectangle(w, h) {
 this.width = w;
 this.height = h;
 this.area = function() { return this.width * this.height; }
}

var paper = new Rectangle(8.5, 11);
var a = paper.area();

8

Defining Static Members

 Functions are objects, and can have properties

function foo() { … }
foo.x = 3; // create property "x"

 Although not useful for normal functions, this capability is helpful for
constructor functions

function Circle(r) { this.radius = r; } // Define a "class" Circle

Circle.PI = 3.14159; // Create a "static" property

Circle.max = function(a, b) { return (a.r > b.r) ? a : b; } // Create a "static" method

9

The prototype Property

 Constructor functions have a property named prototype

 prototype specifies an object serves as a fallback source of properties for objects

created by the constructor

 Add properties to a constructor function's prototype to define methods shared by

all objects created by the constructor

function Circle(r) { this.radius = r; }

Circle.prototype.area = function() {

 return Math.Pow(this.r, 2) * Math.PI;

}

c = new Circle(100);

a = c.area();

10

The prototype Property, cont.

 When the object is created with new, it is linked to its prototype object

 Prototype properties are not copied into the object

 Defining methods using the prototype approach is more efficient than
defining them inside a constructor function

 Can also be used to add methods to existing "classes"

 JavaScript libraries frequently use this capability to augment the functionality of
String and Array objects

11

Objects and Lambda Notation
12

 Beware: lambda expressions are not appropriate for defining object
methods

 For more info, see https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Inheritance

 Use the prototype property to achieve inheritance

 See JavaScript: The Definitive Guide for details

13

Summary: Defining Classes

 In JavaScript, constructor functions serve to define classes

 Define instance variables using this inside the function

 Assign static variables and methods as properties of the constructor function

 Assign instance methods as properties of constructor function's prototype property

 Instance methods must use this to access instance variables

 this is not optional, as in C++ / Java

14

A Complete Example

function Point(x, y) {
 this.x = x; // create instance variables
 this.y = y;

 Point.numPoints++;
}

Point.numPoints = 0; // create "static" member

Point.prototype.toString = function() {
 return "(" + this.x + ", " + this.y + ")";
}

15

Point Example, cont.

var pt = new Point(10, 20);

console.log(Point.numPoints); // 1

var str = pt.toString(); // (10, 20)

16

Further Reading

 https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Objects/Object-oriented_JS

17

JavaScript Modules
18

Modules

 A module is a named collection of variables and functions

 Contains both public variables/functions and private members

 Wraps all members in a private namespace

 Critical concept for enterprise applications

 Avoids the danger of working in global namespace

19

Objects are Almost Modules

 counter = {
 count: 0,
 increment: function() {
 return count++;
 },
 reset: function() {
 count = 0;
 }
}; // This example is broken ... can you spot the problem? ☺

 Gets members out of the global namespace

 Unfortunately, all members are public
 No way to define private variables / methods

20

Module Example

/* define counter "module" */
var counter = (function(){
 var count = 0;
 function doIncrement() {
 return count++;
 }
 function doReset() {
 count = 0;
 }
 return {
 increment: doIncrement,
 reset: doReset
 };
})();

/* use the module */
 counter.increment ();
 counter.reset ();

How it works:

• An anonymous function
defines the module

• Local variables and
functions are private

• Module functions are
exposed via an object
returned from the
anonymous function

21

Topics

 Best Practices

22

JavaScript Best Practices

 Define all variables with let or const

 Avoids surprising behavior when you use var

 Avoid global variables

 Package state into objects or modules

23

JavaScript Best Practices

 Prefer === and !== over their evil twins == and !=

 Safer, less surprising behavior

 Before using + to add, ensure both operands are numbers

 Use parseInt(), parseFloat(), or unary plus to force operands to number

24

JavaScript Best Practices

 Terminate statements with semicolons
 Reduces likelihood of errors

 Prefer opening curly braces on the same line as the construct that starts them
 if (…) {

 Helps avoid some subtle bugs related to semicolon termination

 Avoid the with statement
 Difficult to optimize

 Function definitions and variable initializations inside a with statement lead to surprising
behavior

 Removed from strict form of language in ES 5

 Treat eval function as toxic
 Can tromp on global variables

25

Closing Thoughts

 JavaScript has good parts and bad parts

 JavaScript code quality tool: JSLint

 Identifies poor usage patterns

26

References

 Flanagan, David. JavaScript: The Definitive Guide.
Highly recommended JavaScript reference.

 https://developer.mozilla.org/en/JavaScript
Helpful JavaScript reference from Mozilla

 Crockford, Douglas. JavaScript: The Good Parts.

 http://yuiblog.com/crockford/

 http://www.hunlock.com/
Helpful Javascript Language Tutorials

 http://addyosmani.com/resources/essentialjsdesignpatterns/book/
JavaScript Design Patterns (Module, Singleton, etc.)

27

https://developer.mozilla.org/en/JavaScript
http://yuiblog.com/crockford/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

