
S T E P H E N  S C H A U B

JavaScript "Classes"
1



Classes

 JavaScript originally had no class mechanism

 Even now, when you can define classes with the class keyword, there is 
still no concept of a class behind the scenes

 Objects are defined using 

 Object literals or

 Constructor functions

 Inheritance is supported via a Prototype mechanism

2



Object Literals with Methods

var calculator = { // an object with 3 properties
operand1: 1, 
operand2: 1, 
compute: function() { 

this.result = this.operand1 + this.operand2; 
} 

}; 
calculator.compute(); // What is 1+1? 
print(calculator.result); // Display the result

3



The this Keyword

 this refers to the object on which the function was invoked

 If the function was invoked without an object, this refers to the global 
object

 The global object contains top-level variables and functions

4



The this Keyword

 Consider:

 function setName(newName) { this.name = newName; }

 setName can be invoked on an object:

 var person = { name: "", age: 15, setName: setName };
person.setName("Johnny"); // sets person.name to "Johnny"

 setName can be invoked without an object:

 setName("Johnny"); // defines a new global variable name
alert(name); 

 Having this bound to global object was not a good design decision

 Strict mode prevents this behavior

5



Constructor Functions

 A constructor function is designed to initialize an object with properties

 Invoke with new operator

 Accesses new object using this

 Example:

function Rectangle(w, h) {
this.width = w;
this.height = h;

}

var rect = new Rectangle(2, 4); // rect = { width: 2, height: 4 }

6



Constructor Function Caveat

 Calling a constructor function without using new is a big mistake

 rect = Rectangle(2, 4); // tromps on globals

 Inside the constructor function, references to this cause 
variables/methods to be added to the global object

 Or worse, existing global variables/functions are replaced

 In strict mode, calling constructor function without using new results in 
runtime error

7



Adding Methods to Objects

 We've already seen how methods can be defined in an object literal

 A constructor function can also be used to define methods for its 
objects:

function Rectangle(w, h) {
this.width = w;
this.height = h;
this.area = function() { return this.width * this.height; }

}

var paper = new Rectangle(8.5, 11);
var a = paper.area();

8



Defining Static Members

 Functions are objects, and can have properties

function foo() { … }
foo.x = 3;  // create property "x"

 Although not useful for normal functions, this capability is helpful for 
constructor functions

function Circle(r) { this.radius = r; } // Define a "class" Circle

Circle.PI = 3.14159; // Create a "static" property

Circle.max = function(a, b) { return (a.r > b.r) ? a : b; } // Create a "static" method

9



The prototype Property

 Constructor functions have a property named prototype

 prototype specifies an object serves as a fallback source of properties for objects 

created by the constructor

 Add properties to a constructor function's prototype to define methods shared by 

all objects created by the constructor

function Circle(r) { this.radius = r; }

Circle.prototype.area = function() { 

return Math.Pow(this.r, 2) * Math.PI; 

}

c = new Circle(100);

a = c.area();

10



The prototype Property, cont.

 When the object is created with new, it is linked to its prototype object

 Prototype properties are not copied into the object

 Defining methods using the prototype approach is more efficient than 
defining them inside a constructor function

 Can also be used to add methods to existing "classes"

 JavaScript libraries frequently use this capability to augment the functionality of 
String and Array objects

11



Objects and Lambda Notation
12

 Beware: lambda expressions are not appropriate for defining object 
methods

 For more info, see https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions


Inheritance

 Use the prototype property to achieve inheritance

 See JavaScript: The Definitive Guide for details

13



Summary: Defining Classes

 In JavaScript, constructor functions serve to define classes

 Define instance variables using this inside the function

 Assign static variables and methods as properties of the constructor function

 Assign instance methods as properties of constructor function's prototype property

 Instance methods must use this to access instance variables

 this is not optional, as in C++ / Java

14



A Complete Example

function Point(x, y) {
this.x = x; // create instance variables
this.y = y;

Point.numPoints++;
}

Point.numPoints = 0;  // create "static" member

Point.prototype.toString = function() { 
return "(" + this.x + ", " + this.y + ")"; 

}

15



Point Example, cont.

var pt = new Point(10, 20);

console.log( Point.numPoints ); // 1

var str = pt.toString(); // (10, 20)

16



Further Reading

 https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Objects/Object-oriented_JS 

17



JavaScript Modules
18



Modules

 A module is a named collection of variables and functions

 Contains both public variables/functions and private members

 Wraps all members in a private namespace

 Critical concept for enterprise applications

 Avoids the danger of working in global namespace

19



Objects are Almost Modules

 counter = { 
count: 0,
increment: function() { 
return count++; 

}, 
reset: function() { 
count = 0; 

} 
};  // This example is broken ... can you spot the problem? ☺

 Gets members out of the global namespace

 Unfortunately, all members are public
 No way to define private variables / methods

20



Module Example

/* define counter "module" */
var counter = (function(){ 

var count = 0;  
function doIncrement() {

return count++;
}
function doReset() {

count = 0;
}
return { 

increment: doIncrement, 
reset: doReset 

}; 
})(); 

/* use the module */ 
counter.increment (); 
counter.reset ();

How it works:

• An anonymous function 
defines the module

• Local variables and 
functions are private

• Module functions are 
exposed via an object 
returned from the 
anonymous function

21



Topics

 Best Practices

22



JavaScript Best Practices

 Define all variables with var

 Makes it clear which variables are local and which are global

 Declare all local variables at the top of their function

 Reduces confusion about variable scope

 Avoid global variables

 Package state into objects or modules

23



JavaScript Best Practices

 Prefer === and !== over their evil twins == and !=

 Safer, less surprising behavior

 Before using + to add, ensure both operands are numbers

 Use parseInt(), parseFloat(), or unary plus to force operands to number

24



JavaScript Best Practices

 Terminate statements with semicolons
 Reduces likelihood of errors 

 Prefer opening curly braces on the same line as the construct that starts them
 if ( … ) { 

 Helps avoid some subtle bugs related to semicolon termination

 Avoid the with statement
 Difficult to optimize

 Function definitions and variable initializations inside a with statement lead to surprising 
behavior

 Removed from strict form of language in ES 5

 Treat eval function as toxic
 Can tromp on global variables

25



Closing Thoughts

 JavaScript has good parts and bad parts

 JavaScript code quality tool: JSLint

 Identifies poor usage patterns

26



References

 Flanagan, David. JavaScript: The Definitive Guide.
Highly recommended JavaScript reference.

 https://developer.mozilla.org/en/JavaScript
Helpful JavaScript reference from Mozilla

 Crockford, Douglas. JavaScript: The Good Parts.

 http://yuiblog.com/crockford/

 http://www.hunlock.com/
Helpful Javascript Language Tutorials

 http://addyosmani.com/resources/essentialjsdesignpatterns/book/
JavaScript Design Patterns (Module, Singleton, etc.)

27

https://developer.mozilla.org/en/JavaScript
http://yuiblog.com/crockford/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

