JavaScript "Classes”

JavaScript originally had no class mechanism

Even now, when you can define classes with the class keyword, there is
still no concept of a class behind the scenes

Objects are defined using
Object literals or
Constructor functions

Inheritance is supported via a Prototype mechanism

var calculator = { // an object with 3 properties
operandi: 1,
operand2: 1,
compute: function() {
this.result = this.operandi + this.operand2;

b
3
calculator.compute(); // What is 1+1?
print(calculator.result); // Display the result

this refers to the object on which the function was invoked

If the function was invoked without an object, this refers to the global
object

The global object contains top-level variables and functions

Consider:
function setName(newName) { this.name = newName; }

setName can be invoked on an object:

m"nn

var person = { name: "", age: 15, setName: setName };
person.setName("Johnny"); // sets person.name to "Johnny"

setName can be invoked without an object:

setName("Johnny"); // defines a new global variable name
console.log(name);

Having this bound to global object was not a good design decision
Strict mode prevents this behavior

A constructor function is designed to initialize an object with properties
Invoke with new operator
Accesses new object using this

Example:

function Rectangle(w, h) {
this.width = w;
this.height = h;

}

var rect = new Rectangle(2, 4); // rect = { width: 2, height: 4 }

Calling a constructor function without using new is a big mistake
rect = Rectangle(2, 4); // tromps on globals

Inside the constructor function, references to this cause
variables/methods to be added to the global object

Or worse, existing global variables/functions are replaced

In strict mode, calling constructor function without using new results in
runtime error

We've already seen how methods can be defined in an object literal

A constructor function can also be used to define methods for its
objects:
function Rectangle(w, h) {
this.width = w;
this.height = h;
this.area = function() { return this.width * this.height; }
}

var paper = new Rectangle(8.5, 11);
var a = paper.area();

Functions are objects, and can have properties

function foo() { ... }
foo.x = 3; // create property "x"

Although not useful for normal functions, this capability is helpful for
constructor functions

function Circle(r) { this.radius =r; } // Define a "class" Circle
Circle.PI = 3.14159; // Create a "static" property

Circle.max = function(a, b) { return (a.r > b.r) ?a: b; } // Create a "static" method

Constructor functions have a property named prototype

prototype specifies an object serves as a fallback source of properties for objects
created by the constructor

Add properties to a constructor function's prototype to define methods shared by
all objects created by the constructor

function Circle(r) { this.radius =r; }
Circle.prototype.area = function() {
return Math.Pow(this.r, 2) * Math.PI;

¥

¢ = new Circle(100);
a = c.area();

When the object is created with new, it is linked to its prototype object

Prototype properties are not copied into the object

Defining methods using the prototype approach is more efficient than
defining them inside a constructor function
Can also be used to add methods to existing "classes”

JavaScript libraries frequently use this capability to augment the functionality of
String and Array objects

» Beware: lambda expressions are not appropriate for defining object
methods

For more info, see https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/Arrow functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Use the prototype property to achieve inheritance
See JavaScript: The Definitive Guide for details

In JavaScript, constructor functions serve to define classes

Define instance variables using this inside the function
Assign static variables and methods as properties of the constructor function
Assign instance methods as properties of constructor function's prototype property
Instance methods must use this to access instance variables
this is not optional, as in C++ / Java

function Point(x, y) {

this.x = x; // create instance variables
this.y = y;

Point.numPoints++;

b

Point.numPoints = 0; // create "static" member

Point.prototype.toString = function() {

"n n

return "(" + this.x + ", " + this.y + ")";

b

var pt = new Point(10, 20);
console.log(Point.numPoints); // 1

var str = pt.toString(); // (10, 20)

https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Objects/Object-oriented_JS

JavaScript Modules

A module is a named collection of variables and functions
Contains both public variables/functions and private members
Wraps all members in a private namespace

Critical concept for enterprise applications
Avoids the danger of working in global namespace

counter = {
count: o,
increment: function() {
return count++;

3

reset: function() {
count = 0;

¥

¥; // This example is broken ... can you spot the problem? ©
Gets members out of the global namespace

Unfortunately, all members are public
No way to define private variables / methods

/* define counter "module” */

var counter = (function(){ How it works:
var count = 0;
function doIncrement() { An anonymous function

return count++; .
defines the module

function doReset() {

U= 0; Local variables and
functions are private
return {
increment: doIncrement, Module functions are
reset: doReset . .
: exposed via an object
10; returned from the
/* use the module */ anonymous function

counter.increment ();
counter.reset ();

Define all variables with let or const
Avoids surprising behavior when you use var

Avoid global variables

Package state into objects or modules

Prefer === and !== over their evil twins == and !=
Safer, less surprising behavior

Before using + to add, ensure both operands are numbers
Use parselnt(), parseFloat(), or unary plus to force operands to number

Terminate statements with semicolons
Reduces likelihood of errors

Prefer opening curly braces on the same line as the construct that starts them
if(...){
Helps avoid some subtle bugs related to semicolon termination

Avoid the with statement
Difficult to optimize

Function definitions and variable initializations inside a with statement lead to surprising
behavior

Removed from strict form of language in ES 5

Treat eval function as toxic
Can tromp on global variables

JavaScript has good parts and bad parts
JavaScript code quality tool: JSLint

Identifies poor usage patterns

» Flanagan, David. JavaScript: The Definitive Guide.
Highly recommended JavaScript reference.

e https://developer.mozilla.org/en/JavaScript
Helpful JavaScript reference from Mozilla

» Crockford, Douglas. JavaScript: The Good Parts.
http://yuiblog.com/crockford/

* http://www.hunlock.com/
Helpful Javascript Language Tutorials

e http://addyosmani.com/resources/essentialjsdesignpatterns/book/
JavaScript Design Patterns (Module, Singleton, etc.)

https://developer.mozilla.org/en/JavaScript
http://yuiblog.com/crockford/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

